TB 9-6625-2332-50

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR PULSE GENERATOR (LECROY, MODEL 9210 MOD 200)

Headquarters, Department of the Army, Washington, DC 7 October 2002

Approved for public release; distribution is unlimited distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our FAX number is: DSN 788-6546 or Commercial 256-842-6546. Our e-mail address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this publication. For the World Wide Web, use: https://amcom2028.redstone.army.mil.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION	.	· ·
		Test instrument identification	1	2
		Forms, records, and reports	2	2
		Calibration description	3	2
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	3
		Accessories required	5	3
	III.	CALIBRATION PROCESS		
		Preliminary instructions	6	4
		Equipment setup	7	4
		Output amplitude	8	5
		Period	9	10
		Risetime/falltime	10	12
		Pulse width	11	14
		Pulse jitter	12	16
		Delay	13	17
		Trigger level and polarity	14	20
		Double Pulse	15	23
		Final procedure	16	23

SECTION I IDENTIFICATION AND DESCRIPTION

- **1. Test Instrument Identification.** This bulletin provides instructions for the calibration of Pulse Generator, (LeCroy, Model 9210 Mod 200). The manufacturer's manual was used as the prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
 - a. Model Variations. None.
- **b. Time and Technique**. The time required for this calibration is approximately 6 hours, using the dc and low frequency and microwave technique.
- **2. Forms, Records, and Reports.** Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
- **3. Calibration Description.** TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Table 1. Calibration Description

Test instrument parameters Performance specifications				
e				
mV				
mV				
n				

SECTION II EQUIPMENT REQUIREMENTS

- **4. Equipment Required**. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Reference Standards Set, NSN 4931-00-621-7878. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provided a four-to-one ratio between the standard and TI. Where the four-to-one ratio cannot be met, the actual accuracy of the equipment is shown in parenthesis.
- **5. Accessories Required**. The accessories required for the calibration are common usage accessories, issued as indicated in paragraph **4** above, and are not listed in this calibration procedure.

Table 2. Minimum Specifications of Equipment Required

rable 2. William Specifications of Equipment required							
		Manufacturer and model					
Common name	Minimum use specifications	(part number)					
ATTENUATOR (20 dB)	50Ω 2 Watt (2 required)	Tektronix Model 011-0059-02					
	~	(011-0059-02)					
DIGITIZING OSCILLOSCOPE	Risetime/falltime measurement:	Hewlett-Packard, Model 54121T					
	Accuracy: <100 psec	(54121T)					
	Period:						
	Accuracy: ±62.5 psec						
	Pulse Width:						
	Accuracy: ±77.5 psec						
	RMS Jitter:						
	Accuracy: <15 psec						
FUNCTION/ARBITRARY	Range: 1.02 Vpp	Agilent, Model 33250A (33250A)					
GENERATOR	Accuracy: ±20 mV						
	Range: 1.5 MHz						
	Accuracy: ±1 Hz						
MULTIMETER	Range: 15 to -15 V dc	John Fluke, Model 8840A/AF-05/09					
	Accuracy: ±.25%	(AN/GSM-64D)					
	Range: 20 k?						
	Accuracy: ±2.5%						
OSCILLOSCOPE	Range: 1 V per division	Tektronix, Type 2465BOPT46					
	Accuracy: ±3%	(2465BOPT46)					
	Range: 100 nsec per division						
	Accuracy: ±1%						
TERMINATOR	50Ω 20 Watt	NARDA Model 374NM (374NM)					

SECTION III CALIBRATION PROCESS

6. Preliminary Instructions

- **a**. The instructions outlined in paragraphs **6** and **7** are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b**. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.
- **c**. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure.
 - **d**. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.

NOTE

Before connecting TI, the protective earth terminal of the instrument must be connected to the protective conductor of the line power cord. The line plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding). Grounding one conductor of a two-conductor outlet is not sufficient protection.

NOTE

When indications specified in this procedure are not within tolerance, perform the power supply check prior to making adjustments.

a. Configure TI as shown in figure 1.

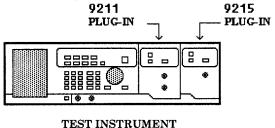


Figure 1. Test instrument configuration.

- **b.** Connect TI to a 115 V ac power source.
- **c.** Press **POWER** key to on and allow at least 15 minutes for TI to stabilize.

8. Output Amplitude

- (1) On TI press **RECALL SETUP** pushbutton and select **STANDARD** key on the crt.
 - (2) Press TI keys as indicated in (a) thru (c) below.
 - (a) MORE.
 - (b) **CAL**.
 - (c) **EXECUTE**.
 - (3) Wait for TI to finish self calibration.
 - (4) Press TI keys as indicated in (a) thru (c) below.
 - (a) MORE.
 - (b) **SELF TEST**.
 - (c) **EXECUTE**.
 - (5) Wait for TI to finish self test.
 - (6) Connect equipment as shown in figure 2 below.

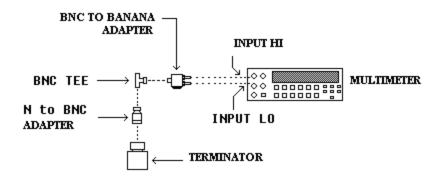


Figure 2. Termination check.

- (7) Setup multimeter to measure ohms.
- (8) Using multimeter, measure ohms. Multimeter indication will be within the limits specified in table 3. Record the measured value as actual termination resistance in ohms.

(9) Calculate the termination correction factor using the formula below:

$$[.5]/[49/(99)]$$

[.5]/[.4949] = 1.01 = Termination correction factor

- (10) Record the termination correction factor in table 4, 5, 6, and 7.
- (11) Setup multimeter to measure V dc.

- (12) Connect TI 9211 module **OUTPUT** (upper BNC connector) to the open end of the BNC tee adapter on the front of the multimeter.
 - (13) Press TI pushbuttons as listed in (a) through (f) below:
 - (a) **CHANNEL A**.
 - (b) **Vhigh** and enter **5** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from data keyboard and press **ENTER/HZ**.
- (d) **Trigger-Mode** and repeatedly press **ENTER/HZ** until **EXT. WIDE** mode is selected.
 - (e) Trigger slope ().
 - (f) **DISABLE** (model 9211 output module) to on (red light extinguished).
- (14) Record multimeter indication in table 4 under actual multimeter reading for **Vhigh** setting.
- (15) Multiply the actual multimeter reading, times the termination correction factor, and record the results in table 4.
- (16) Verify that the value recorded in (15) above is within limits specified for the **Vhigh** setting in table 4.
- (17) Set TI to the next **Vhigh** setting listed in table 4 and repeat (14) through (16) above.
 - (18) Repeat (17) above for the remaining **Vhigh** settings listed in table 4.

Table 4. 9211 Positive Output Amplitude

		ic i. owill oblicite of			
Test				Multimeter	
instrument		Termination		indication X	
Vhigh	Multimeter	correction		termination	
setting	indication	factor	Min	correction factor	Max
5.0			4.86		5.14
3.0			2.9		3.1
1.0			.94		1.06
0.5			0.45		0.55
0.3			0.254		0.346
0.1			0.058		0.142

- (19) Press TI pushbuttons as listed in (a) through (c) below:
 - (a) **Vhigh** and enter **0** from data keyboard and press **ENTER/HZ**.
 - (b) **Vlow** and enter -5 from data keyboard and press **ENTER/HZ**.
 - (c) TRIGGER SLOPE POSITIVE.
- (20) Record multimeter indication in table 5 under actual multimeter reading for **Vlow** setting.
- (21) Multiply the actual multimeter reading times the termination correction factor and record the results in table 5.

- (22) Verify that the value recorded in (21) above is within limits specified for the **Vlow** setting.
- (23) Set TI to the next **Vlow** setting listed in table 5 and repeat (20) through (22) above.
 - (24) Repeat (23) above for the remaining **Vlow** settings listed in table 5.

Table 5. 9211 negative Output Amplitude

		0			
Test instrument				Multimeter indication	
Vlow setting	Multimeter	Termination		X termination	
	indication	correction factor	Min	correction factor	Max
-5.0			-5.14		-4.86
-3.0			-3.1		-2.9
-1.0			-1.06		-0.94
-0.5			-0.55		-0.45
-0.3			-0.346		0.254
-0.1			-0.142		0.058

- (25) Press **DISABLE** pushbutton (model 9211 output module) to off (red light lit).
- (26) Disconnect TI 9211 module **OUTPUT** from BNC tee adapter.
- (27) Connect TI 9215 module **OUTPUT** to the open end of the BNC tee adapter on the front of the multimeter.
 - (28) Press TI pushbuttons as listed in (a) through (f) below:
 - (a) **CHANNEL B**.
 - (b) **Vhigh** and enter **15** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from data keyboard and press **ENTER/HZ**.
 - (d) Trigger Mode Ext. Wid.
 - (e) **Trigger slope** (-).
 - (f) **DISABLE** (9215 output module) to on (red light extinguished).
- (29) Record multimeter indication in table 6 under actual multimeter reading for **Vhigh** setting.
- (30) Multiply the actual multimeter reading times the termination correction factor and record the results in table 6.
- (31) Verify that the value recorded in (30) above is within limits specified for the **Vhigh** setting.
- (32) Set TI to the next **Vhigh** setting listed in table 6 and repeat (29) through (31) above.
 - (33) Repeat (32) above for the remaining **Vhigh** settings listed in table 6.

Table 6. 9215 Positive Output Amplitude

				Multimeter	
Test instrument		Termination		indication	
Vhigh	Multimeter	correction		X termination	
setting	indication	factor	Min	correction factor	Max
15.0			14.845		15.155
10.0			9.895		10.105
5.0			4.945		5.055

- (34) Press TI pushbuttons as listed in (a) through (c) below:
 - (a) **Vhigh** and enter **0** from data keyboard and press **ENTER/HZ**.
 - (b) **Vlow** and enter **-5** from data keyboard and press **ENTER/HZ**.
 - (c) TRIGGER SLOPE POSITIVE.
- (35) Record multimeter indication in table 7 under actual multimeter reading for **Vlow** setting.
- (36) Multiply the actual multimeter reading times the termination correction factor and record the results in table 7.
- (37) Verify that the value recorded in (36) above is within limits specified for the **Vlow** setting.
- (38) Set TI to the next **Vlow** setting listed in table 7 and repeat (35) through (37) above.
 - (39) Repeat (38) above for the remaining **Vlow** settings listed in table 7.

Table 7. 9215 Negative Output Amplitude

Test instrument Vlow setting	Multimeter indication	Termination correction factor	Min	Multimeter indication X termination correction factor	Max
-5.0			-5.055		-4.945
-10.0			-10.105		-9.895
-15.0			-15.155		-14.845

- (40) Press **DISABLE** pushbutton (9215 output module) to off (red light lit).
- (41) Disconnect TI 9215 module **OUTPUT** from BNC tee adapter.
- **b. Adjustments**. No adjustments can be made.

9. Period

a. Performance Check

(1) Connect equipment as shown in figure 3 below.

DIGITIZING OSCILLOSCOPE TRIG BNC TO 00 0 SMA ADAPTER ATTENUATOR TEST INSTRUMENT (20 dB) OUTPUT **TRIGGER** OUTPUT 20 dB ATTENUATOR TEKTRONIX MDL 011-0059-02 **NOTE:**

Figure 3. Period.

OR EQUIVALENT

- (2) Reset digitizing oscilloscope and cal the vertical gain.
- (3) Press TI pushbuttons as listed in (a) through (j) below:
 - (a) **CHANNEL A**.
 - (b) **Vhigh** and enter **2.5** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **.9** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **.9** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **10** from data keyboard and press **n/GHz**.
 - (g) Press **PULSE WIDTH**.
 - (h) Press **CHANGE FORMAT** to **DUTY**.
 - (i) Enter **50** from data keyboard and press **ENTER/HZ**.
 - (j) **DISABLE** (model 9211 output module), to on (red light extinguished).
- (4) Set digitizing oscilloscope channel 3 and trigger probe attenuation to 10.
- (5) Setup digitizing oscilloscope to measure period.
- (6) Verify that the digitizing oscilloscope indicates within the limits listed in table 8 for the $\bf Per$ setting.
 - (7) Set TI to the next **Per** listed in table 8.
 - (8) Repeat (5) and (6) above for the remaining **Per** settings listed in table 8.

Table 8. 9211 Period

	trument ENTRY	Digitizing oscilloscope indications				
P	er	Min Max			ax	
10	nsec	9.75	nsec	10.25	nsec	
100	nsec	99.3	nsec	100.7	nsec	
1	μsec	.9948	μsec	1.005	μsec	
10	μsec	9.95	μsec	10.05	μsec	
100	μsec	99.5	μsec	100.5	μsec	
1	msec	.995	msec	1.005	msec	
10	msec	9.95	msec	10.05	msec	
100	msec	99.5	msec	100.5	msec	
500	msec	497.5	msec	502.5	msec	

- (8) Press **DISABLE** pushbutton (model 9211 output module) to off (red light lit).
- (9) Disconnect cable from TI 9211 module **OUTPUT**.
- (10) Connect cable to TI 9215 module OUTPUT.
- (11) Press TI pushbuttons as listed in (a) through (j) below:
 - (a) **CHANNEL B.**
 - (b) **Vhigh** and enter **5** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **5** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **5** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **20** from data keyboard and press **n/GHz**
 - (g) Press **PULSE WIDTH**.
 - (h) Press **CHANGE FORMAT** to **DUTY**.
 - (i) Enter **50** from data keyboard and press **ENTER/HZ**.
 - (j) **DISABLE** (model 9215 output module) to on (red light extinguished).
- (12) Set digitizing oscilloscope channel 3 and trigger probe attenuation to 10.
- (13) Setup digitizing oscilloscope to measure period.
- (14) Verify that the digitizing oscilloscope indicates within the limits listed in table 9 for the **Per** setting.
 - (15) Set TI to the next **Per** listed in table 9.
 - (16) Repeat (13) and (14) above for the remaining **Per** settings listed in table 9.

Table 9. 9215 Period

Test instrument DATA ENTRY	oscilloscope ations				
Per	Min Max				
20 nsec	19.7 nsec	20.3 nsec			
100 nsec	99.3 nsec	100.7 nsec			
1 µsec	.9948 µsec	1.005 µsec			

	Table J. Jail Tellou - Colli	inucu				
Test instrument	Digitizing	oscilloscope				
DATA ENTRY	indications					
Per	Min Max					
10 μsec	9.95 nsec	10.05 μsec				
100 μsec	99.5 nsec	100.5 μsec				
1 msec	.995 msec	1.005 msec				
10 msec	9.95 msec	10.05 msec				
100 msec	99.5 msec	100.5 msec				
500 msec	497.5 msec	502.5 msec				

Table 9. 9215 Period - Continued

- (17) Press **DISABLE** pushbutton (9215 output module) to off (red light lit).
- (18) Disconnect cable from TI 9215 module **OUTPUT**.
- **b. Adjustments**. No adjustments can be made.

10. Risetime/Falltime

- (1) Connect equipment as shown in figure 3.
- (2) Reset digitizing oscilloscope and cal the gain.
- (3) Press TI pushbuttons as listed in (a) through (h) below:
 - (a) **CHANNEL A**.
 - (b) **Vhigh** and enter **5** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **1** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **1** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **1** from data keyboard and press **mMHz**.
 - (g) **Duty** and enter **50** from data keyboard and press **ENTER/HZ**.
 - (h) **DISABLE** (model 9211 output module) to on (red light extinguished).
- (4) Set digitizing oscilloscope channel 3 and trigger probe attenuation to 10.
- (5) Setup digitizing oscilloscope to measure risetime.
- (6) Verify that the digitizing oscilloscope indicates within the limits listed in table 10 for the **Lead** setting.
 - (7) Setup digitizing oscilloscope to measure falltime.
- (8) Verify that the digitizing oscilloscope indicates within the limits listed in table 10 for the **Trail** setting.
 - (9) Set TI to the next **Lead**, **Trail**, and **Per** (if listed) settings listed in table 10.
 - (10) Repeat (5) through (8) above.
- (11) Repeat (9) through (10) above for the remaining **Lead**, **Trail**, and **Per** settings listed in table 10.

		Tubic 10.0	arr mocemme ar	ra r arrenne		
				0 0	oscilloscope ations	
	Test instrument				ec)	
	settings		Rise	time	Fall	time
Per setting	Lead setting	Trail setting	Min	Max	Min	Max
1 μsec	le-9	le-9	0.6e-9	1.4e-9	0.6e-9	1.4e-9
	10e-9	10e-9	8.7e-9	11.3e-9	8.7e-9	11.3e-9
	20e-9	20e-9	17.7e-9	22.3e-9	17.7e-9	22.3e-9
	100e-9	100e-9	90e-9	110e-9	90e-9	110e-9
100 μsec	1e-6	le-6	0.9e-6	1.1e-6	0.9e-6	1.1e-6
	10e-6	10e-6	9e.6	11e-6	9e-6	11e-6
10 msec	100e-6	100e-6	90e-6	110e-6	90e-6	110e-6
	1e-3	1e-3	0.9e-3	1.1e-3	0.9e-3	1.1e-3
200 msec	10e-3	10e-3	9e-3	11e-3	9e-3	11e-3

Table 10. 9211 Risetime and Falltime

- (12) Press **DISABLE** pushbutton (model 9211 output module) to off (red light lit).
- (13) Disconnect cable from TI 9211 module **OUTPUT**.
- (14) Connect cable to TI 9215 module **OUTPUT.**
- (15) Set digitizing oscilloscope channel 3 and trigger probe attenuation to 10.
- (16) Press TI pushbuttons as listed in (a) through (h) below:
 - (a) CHANNEL B
 - (b) **Vhigh** and enter **5** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **1** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **1** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **1** from data keyboard and press **mMHz**.
 - (g) **Duty** and enter **50** from data keyboard and press **ENTER/HZ**.
- (h) Press **DISABLE** pushbutton (9215 output module) to on (red light extinguished).
 - (17) Setup digitizing oscilloscope to measure risetime.
- (18) Verify that the digitizing oscilloscope indicates within the limits listed in table 11 for the **Lead** setting.
 - (19) Setup digitizing oscilloscope to measure falltime.
- (20) Verify that the digitizing oscilloscope indicates within the limits listed in table 11 for the **Trail** setting.
 - (21) Set TI to the next **Lead**, **Trail**, and **Per** (if listed) settings listed in table 11.
 - (22) Repeat (17) through (20) above.
- (23) Repeat (21) through (22) above for the remaining **Lead**, **Trail**, and **Per** settings listed in table 11.

Test instrument settings			Digitizing oscilloscope indications (sec)			
Per	Per Lead Trail		Rise	time	Fall	time
setting	setting	setting	Min	Max	Min	Max
1 μsec	6.5e-9	6.5e-9	4.9e-9	8.1e-9	4.9e-9	8.1e-9
	10e-9	10e-9	7.7e-9	12.3e-9	7.7e-9	12.3e-9
	20e-9	20e-9	15.7e-9	24.3e-9	15.7e-9	24.e3-9
	100e-9	100e-9	79.7e-9	120.3e-9	79.7e-9	120.3e-9
100 μsec	l-6	le-6	0.799e-6	1.2e-6	0.799e-6	1.2e-6
	10e-6	10e-6	8e-6	12e-6	8e-6	12e-6
10 msec	100e-6	100e-6	80e-6	120e-6	80e-6	120e-6
	1e-3	1e-3	0.8e-3	1.2e-3	0.8e-3	1.2e-3
200 msec	10e-3	10e-3	8e-3	12e-3	8e-3	12e-3
500 msec	100e-3	100e-3	76e-3	114e-3	76e-3	114e-3

Table 11. 9215 Risetime and Falltime

- (23) Press **DISABLE** pushbutton (model 9215 output module) to off (red light lit).
- (24) Disconnect cable from TI 9215 module **OUTPUT**.
- **b. Adjustments**. No adjustments can be made.

11. Pulse Width

- (1) Connect equipment as shown in figure 3.
- (2) Reset digitizing oscilloscope and cal the gain.
- (3) Press TI pushbuttons as listed in (a) through (h) below:
 - (a) **CHANNEL A**.
 - (b) **Vhigh** and enter **2.5** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **.9** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **.9** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **10** from data keyboard and press **n/GHz**.
 - (g) **Wid** and enter **1.6** from data keyboard and press **n/GHz**.
- (h) Press **DISABLE** pushbutton (model 9211 output module) to on (red light extinguished).
 - (4) Set digitizing oscilloscope channel 3 and trigger probe attenuation to 10.
 - (5) Setup digitizing oscilloscope to measure pulse width.
- (6) Verify that the digitizing oscilloscope indicates within the limits listed in table 12 for the **Per** and **Wid** setting.
 - (7) Set TI to the next **Per** and **Wid** settings listed in table 12.
 - (8) Repeat (5) through (7) above.
 - (9) Repeat (8) above for the remaining **Per** and **Wid** settings listed in table 12.

Table 12. 9211 Pulse Width

		Digitizing oscilloscope indications			
Test instr	Test instrument settings		(sec)		
Per	Wid				
setting	setting	Min	Max		
10 nsec	1.6 nsec	1.29e-9	1.91e-9		
10 nsec	5 nsec	4.675e-9	5.25e-9		
20 nsec	10 nsec	9.62e-9	10.38e-9		
200 nsec	100 nsec	99.2e-9	100.8e-9		
1 μsec	500 nsec	497.2e-9	502.8e-9		
4 μsec	2 μsec	1.99e-6	2.01e-6		
20 μsec	10 μsec	9.95e-6	10.05e-6		
200 μsec	100 μsec	99.5e-6	100.5e-6		
2 msec	1 msec	0.995e-3	1.005e-3		
20 msec	10 msec	9.95e-3	10.05e-3		
200 msec	100 msec	99.5e-3	100.5e-3		

- (10) Press **DISABLE** pushbutton (model 9211 output module) to off (red light lit).
- (11) Disconnect cable from TI 9211 module **OUTPUT**.
- (12) Connect cable to TI 9215 module **OUTPUT.**
- (13) Press TI pushbuttons as listed in (a) through (h) below:
 - (a) **CHANNEL B.**
 - (b) **Vhigh** and enter **4** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **5** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **5** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **20** from data keyboard and press **n/GHz**.
 - (g) Wid and enter 10 from data keyboard and press n/GHz.
- (h) Press, **DISABLE** pushbutton (model 9215 output module) to on (red light extinguished).
 - (14) Set digitizing oscilloscope channel 3 and trigger probe attenuation to 10.
 - (15) Setup digitizing oscilloscope to measure pulse width.
- (16) Verify that the digitizing oscilloscope indicates within the limits listed in table 13 for the **Per** and **Wid** setting.
 - (17) Set TI to the next **Per** and **Wid** settings listed in table 13.
 - (18) Repeat (15) through (17) above.
 - (19) Repeat (18) above for the remaining **Per** and **Wid** settings listed in table 13.

	1 abic 10, 0×10	T dibe Width		
		Digitizing oscillos	cope indications	
Test instrum	ent settings	(sec)		
Per	Wid			
setting	setting	Min	Max	
20 nsec	10 nsec	9.62e-9	10.38e-9	
200 nsec	100 nsec	99.25e-9	100.8e-9	
1 μsec	500 nsec	497.2e-9	502.8e-9	
4 μsec	2 μsec	1.99e-6	2.01e-6	
20 μsec	10 μsec	9.95e-6	10.05e-6	
200 μsec	100 μsec	99.5e-6	100.5e-6	
2 msec	1 msec	.995e-3	1.005e-3	
20 msec	10 msec	9.95e-3	10.05e-3	
200 msec	100 msec	99.5e-3	100.5e-3	

Table 13. 9215 Pulse Width

- (19) Press **DISABLE** pushbutton (model 9215 output module) to off (red light lit).
- (20) Disconnect cable from TI 9215 module **OUTPUT**.
- **b. Adjustments**. No adjustments can be made.

12. Pulse Jitter

- (1) Connect equipment as shown in figure 3.
- (2) Reset digitizing oscilloscope and cal the gain.
- (3) Press TI pushbuttons as listed in (a) through (f) below:
 - (a) **CHANNEL A**.
 - (b) **Vhigh** and enter **5** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **.9** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **.9** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **20** from data keyboard and press **n/GHz**.
 - (g) Wid and enter 10 from data keyboard and press n/GHz.
- (h) Press **DISABLE** pushbutton (model 9211 output module) to on (red light extinguished).
 - (4) Set digitizing oscilloscope channel 3 and trigger probe attenuation to 10.
- (5) Setup digitizing oscilloscope to display the leading edge of a single pulse at the center of the display.
- (6) Setup digitizing oscilloscope to take a time histogram with 300 samples at the mid point of the leading edge of the displayed pulse.
- (7) Verify that the digitizing oscilloscope sigma indication is less than the limit listed in table 14.

Table 14. 9211 Pulse Jitter

Tubic 11. Unit 1 uisc sitter
Digitized oscilloscope
indication
(psec)
<60 psec

- (8) Press **DISABLE** pushbutton (model 9211 output module) to off (red light lit).
- (9) Disconnect cable from TI 9211 module **OUTPUT**.
- (10) Connect cable to TI 9215 module OUTPUT.
- (11) Press TI pushbuttons as listed in (a) through (h) below:
 - (a) **CHANNEL B**.
 - (b) Vhigh and enter 5 from data keyboard and press ENTER/HZ.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **5** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **5** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **20** from data keyboard and press **n/GHz**.
 - (g) **Wid** and enter **10** from data keyboard and press **n/GHz**.
- (h) Press **DISABLE** pushbutton (model 9215 output module) to on (red light extinguished).
- (12) Setup digitizing oscilloscope to display the leading edge of a single pulse at the center of the display.
- (13) Setup digitizing oscilloscope to take a time histogram with 300 samples at the mid point of the leading edge of the displayed pulse.
- (14) Verify that the digitizing oscilloscope sigma indication is less than the limit listed in table 15.

Table 15. 9215 Pulse Jitter
Digitized oscilloscope
indication
(psec)
<60 psec

- (15) Press **DISABLE** pushbutton (model 9215 output module) to off (red light lit).
- (16) Disconnect cable from TI 9215 module **OUTPUT**.
- **b. Adjustments**. No adjustments can be made.

13. Delay

- (1) Connect equipment as shown in figure 3.
- (2) Reset digitizing oscilloscope and cal the gain.
- (3) Press TI pushbuttons as listed in (a) through (h) below:

- (a) **CHANNEL A**.
- (b) **Vhigh** and enter **2.5** from data keyboard and press **ENTER/HZ**.
- (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
- (d) **Lead** and enter **.9** from data keyboard and press **n/GHz**.
- (e) **Trail** and enter **.9** from data keyboard and press **n/GHz**.
- (f) **Per** and enter **20** from data keyboard and press **n/GHz**.
- (g) **Wid** and enter **17** from data keyboard and press **n/GHz**.
- (h) Press **DISABLE** pushbutton (model 9211 output module) to on (red light extinguished).
 - (4) Setup digitizing oscilloscope to display the pulse train.
- (5) Setup digitizing oscilloscope to perform a Δt measurement by placing V marker 1, V marker 2, Start Marker and Stop Marker at the same point of the leading edge of the left most pulse that is displayed on the crt.
 - (6) Press TI pushbuttons as listed in (a) and (b) below:
 - (a) **CHANNEL A**.
 - (b) **Delay** and enter **10** from data keyboard and press **n/GHz**.
- (7) Set digitizing oscilloscope Stop marker on the leading edge of the displayed pulse where the V markers intersect the pulse.
- (8) Verify that the digitizing oscilloscope ΔT indication is within the limits listed in table 16 for the **Delay** setting.
 - (9) Set TI to the next **Per** and **Wid** settings listed in table 16.
- (10) On the digitizing oscilloscope turn off the V markers and the Start and Stop markers.
 - (11) Repeat (4) and (5) above.
 - (12) Press TI pushbuttons as listed in (a) and (b) below:
 - (a) Channel A.
 - (b) **Delay** and enter the next delay value in table 16 from the data keyboard.
 - (13) Repeat (7) and (8) above.
- (14) Repeat (9) through (13) above for the remaining **Per**, **Wid** and **Delay** settings listed in table 16.

Table 16. 9211 Delay

Test instrument settings		Digitizing oscilloscope settings		Digitizing oscilloscope ΔT indications (sec)		
Per	Wid	Delay	Time range	Time delay	Min	Max
20 n	17 n	10 n	20e-9	30e-9	8.95e-9	11.05e-9
200 n	175 n	100 n	200e-9	190e-9	98.5e-9	101.5e-9
2 μ	1.75 μ	1 μ	2e-6	1.8e-6	0.994e-6	1.006e-6
20 μ	17.5 μ	10 μ	20e-6	18e-6	9.949e-6	10.051e-6
200 μ	175 μ	100 μ	200e-6	180e-6	99.5e-6	100.5e-6

			Digitizing oscillo		oscilloscope	
Test instrument		Digitizing oscilloscope		ΔT indications		
settings		settings		(sec)		
Per	Wid	Delay	Time range	Time delay	Min	Max
2 m	1.75 m	1 m	2e-3	1.8e-3	0.995e-3	1.005e-3
20 m	17.5 m	10 m	20e-3	18e-3	9.95e-3	10.05e-3
200 m	175 m	100 m	200e-3	180e-3	99.5e-3	100.5e-3

- (15) Press **DISABLE** pushbutton (model 9211 output module) to off (red light lit).
- (16) Disconnect cable from TI 9211 module **OUTPUT**.
- (17) Connect cable to TI 9215 module **OUTPUT.**
- (18) Press TI pushbuttons as listed in (a) through (h) below:
 - (a) **CHANNEL B**.
 - (b) **Vhigh** and enter **5** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **5** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **5** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **40** from data keyboard and press **n/GHz**.
 - (g) Wid and enter 10 from data keyboard and press n/GHz.
- (h) Press **DISABLE** pushbutton (model 9215 output module) to on (red light extinguished).
 - (19) Setup digitizing oscilloscope to display the pulse train.
- (20) Setup digitizing oscilloscope to perform a ΔT measurement by placing V marker 1, V marker 2, Start Marker and Stop Marker at the same point of the leading edge of the left most pulse that is displayed on the crt.
 - (21) Press TI pushbuttons as listed in (a) and (b) below:
 - (a) **CHANNEL B**.
 - (b) **Delay** and enter **10** from data keyboard and press **n/GHz**.
- (22) Set digitizing oscilloscope Stop marker on the leading edge of the displayed pulse where the V markers intersect the pulse.
- (23) Verify that the digitizing oscilloscope ΔT indication is within the limits listed in table 17 for the **Delay** setting.
 - (24) Set TI to the next **Per** and **Wid** settings listed in table 17.
- (25) On the digitizing oscilloscope turn off the V markers and the Start and Stop markers.
 - (26) Repeat (22) and (23) above.
 - (27) Press TI pushbuttons as listed in (a) and (b) below:
 - (a) **CHANNEL B**.
 - (b) **Delay** and enter the next delay value in table 17 from the data keyboard.

- (28) Repeat (23) and (24) above.
- (29) Repeat (24) through (28) above for the remaining **Per**, **Wid** and **Delay** settings listed in table 17.

Table 17. 9215 Delay

				Digitizing oscilloscope		
Test instrument		Digitizing oscilloscope		ΔT indications		
	settings		settings		(sec)	
Per	Wid	Delay	Time range	Time delay	Min	Max
40 n	10 n	10 n	50e-9	16e-9	8.95e-9	11.05e-9
200 n	175 n	100 n	200e-9	190e-9	98.5e-9	101.5e-9
2 μ	1.75 μ	1 μ	2e-6	1.8e-6	0.994e-6	1.006e-6
20 μ	17.5 μ	10 μ	20e-6	18e-6	9.949e-6	10.051e-6
200 μ	175 μ	100 μ	200e-6	180e-6	99.5e-6	100.5e-6
2 m	1.75 m	1 m	2e-3	1.8e-3	0.995e-3	1.005e-3
20 m	17.5 m	10 m	20e-3	18e-3	9.95e-3	10.05e-3
200 m	175 m	200 m	200e-3	180e-3	99.5e-3	100.5e-3

- (30) Press **DISABLE** pushbutton (model 9215 output module) to off (red light lit).
- (31) Disconnect cable from TI 9215 module **OUTPUT**.
- **b. Adjustments**. No adjustments can be made.

14. Trigger Level and Polarity

a. Performance Check

(1) Connect equipment as shown in figure 4 below.

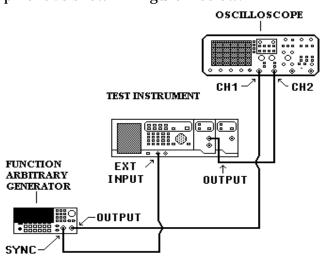


Figure 4. Trigger level and polarity.

- (2) Press TI pushbuttons as listed in (a) through (l) below:
 - (a) **CHANNEL A**.
 - (b) **Vhigh** and enter **1.0** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **.9** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **.9** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **100** from data keyboard and press **n/GHz**.
 - (g) Wid and enter 1 from data keyboard and press mMHz.
 - (h) Trigger Impedance 50.
 - (i) **Trigger Level 0.5**.
 - (j) Trigger Slope positive.
 - (k) **Trigger Mode single**.
 - (l) **DISABLE** (model 9211 output module) to on (red light extinguished).
- (3) Set up function/arbitrary generator for an output of 1.02 Vpp $100\ \text{kHz}$ square wave.
 - (4) Set oscilloscope **CHANNELs A** and **B** input impedance to 50Ω .
- (5) Adjust oscilloscope controls to obtain a satisfactory dual two-channel display on the crt.
- (6) Verify that the displayed traces on the oscilloscope crt go positive at the same time.
 - (7) Set TI **Trigger Level** to **-0.5**.
 - (8) Verify that the oscilloscope **CHANNEL B** trace still displays a pulse.
 - (9) Set TI **Trigger Level** to **-0.52**.
 - (10) Verify that the oscilloscope **CHANNEL B** trace does not display a pulse.
 - (11) Set TI **Trigger Level** to **0.52**.
 - (12) Verify that the oscilloscope **CHANNEL B** trace does not display a pulse.
 - (13) Set TI **Trigger Level** to **0.5** and **Trigger Slope** to **Neg**.
- (14) Verify that the **CHANNEL B** trace goes positive at the same time that the **CHANNEL A** trace goes negative.
 - (15) Disconnect all equipment from the TI.

b. Adjustments

- (1) Press TI **POWER ON/DISABLE** key to **DISABLE**.
- (2) Disconnect 115 V power cord from TI.
- (3) Remove TI top cover.
- (4) Remove power supply module from TI chassis, leaving the power supply connected to the TI motherboard.

- (5) Reconnect 115 V power cord to TI.
- (6) Press TI **POWER ON/DISABLE** key to **ON.**
- (7) Press TI pushbuttons as listed in (a) through (l) below:
 - (a) **CHANNEL A**.
 - (b) **Vhigh** and enter **1.0** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **.9** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **.9** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **100** from data keyboard and press **n/GHz**.
 - (g) **Wid** and enter **1** from data keyboard and press **mMHz**.
 - (h) Trigger Impedance 50.
 - (i) Trigger Level 0.5.
 - (j) Trigger Slope positive.
 - (k) **Trigger Mode single**.
- (l) Press **DISABLE** pushbutton (model 9211 output module) to on (red light extinguished).
- (8) Set up function/arbitrary generator for an output of 1.02 Vpp 100 kHz square wave.
 - (9) Set oscilloscope **CHANNELs A** and **B** input impedance to 50Ω .
- (10) Adjust oscilloscope controls to obtain a satisfactory dual two-channel display on the crt.
 - (11) Adjust R66 (fig. 5) until **CHANNEL B** waveform just appears and is stable (R).

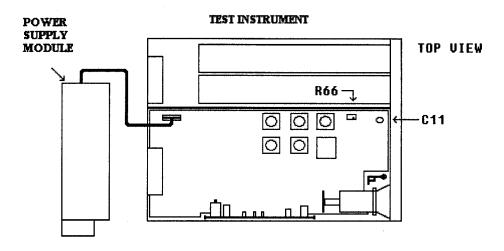


Figure 5. Trigger level adjust.

15. Double Pulse

a. Performance Check

- (1) Connect equipment as shown in figure 4.
- (2) Press TI pushbuttons as listed in (a) through (m) below:
 - (a) **CHANNEL A**.
 - (b) **Vhigh** and enter **1.0** from data keyboard and press **ENTER/HZ**.
 - (c) **Vlow** and enter **0** from the data keyboard and press **ENTER/HZ**.
 - (d) **Lead** and enter **.9** from data keyboard and press **n/GHz**.
 - (e) **Trail** and enter **.9** from data keyboard and press **n/GHz**.
 - (f) **Per** and enter **300** from data keyboard and press **n/GHz**.
 - (g) Wid and enter 100 from data keyboard and press n/GHz.
 - (h) Double Off
 - (i) Trigger Impedance 50.
 - (j) Trigger Level 0.1.
 - (k) Trigger Slope positive.
 - (l) Trigger Mode single.
- (m) Press **DISABLE** pushbutton (model 9211 output module) to on (red light extinguished).
- (3) Set up function/arbitrary generator for an output of 1.02 Vpp $1.5~\mathrm{MHz}$ square wave.
 - (4) Set oscilloscope **CHANNELs A** and **B** input impedance to 50Ω .
- (5) Adjust oscilloscope controls to obtain a satisfactory dual two-channel display on the crt.
- (6) Verify for each positive pulse displayed on **CHANNEL A** of the oscilloscope that there is one positive pulse displayed on **CHANNEL B**.
 - (7) Press TI pushbuttons as listed in (a) and (b) below:
 - (a) **Delay** and enter **200** from data keyboard and press **N/GHz**.
 - (b) 2 pulse On.
- (8) Verify for each positive pulse displayed on **CHANNEL A** of the oscilloscope that there are two positive pulses displayed on **CHANNEL B**.
 - (9) Disconnect all equipment from the TI.
 - **b. Adjustments**. No adjustments can be made.

16. Final Procedure

- **a**. Deenergize and disconnect all equipment.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25

THESE ARE THE INSTRUCTIONS FOR SENDING AN ELECTRONIC 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" whomever@avma27.army.mil

To: 2028@redstone.army.mil
Subject: DA Form 2028
1. **From**: Joe Smith

2. Unit: Home

Address: 4300 Park
 City: Hometown

5. **St**: MO6. **Zip**: 77777

7. **Date Sent**: 19-Oct-93

8. **Pub No**: TB 9-6625-xxxx-35

9. Pub Title: Calibration Procedure for ...

10. **Publication Date**:11. Change Number:

12. Submitted Rank: MSG
13. Sumitter Fname: Joe
14. Submitter Mname: T
15. Submitter Lname: Smith

10. Submitter Linume. Sinten

16. **Submitter Phone**: (123) 123-1234

17. **Problem**: 118. Page: 219. Paragraph: 3

20 Line: 421. NSN: 522. Reference: 623. Figure: 724. Table: 825. Item: 9

27: **Text**:

26. Total: 123

This is the text for the problem below line 27.

By Order of the Secretary of the Army:

ERIC K. SHINSEKI General, United States Army Chief of Staff

OFFICIAL:

Joel B. Hul JOEL B. HUDSON Administrative Assistant to the Secretary of the Army

0224711

Distribution:

To be distributed in accordance with initial distribution number (IDN) 344748, requirements for calibration procedure TB 9-6625-2332-50.

PIN: 080250-000